
Myles Harrison,
AI Consultant & Trainer

January 13th, 2025

LLMs for me

Fine-tuning LLMs,
PEFT & Quantization

llmsfor.me

https://www.nlpfromscratch.com
http://llmsfor.me

Agenda

Conclusion

Front Matter

Fine-tuning LLMs

Quantization & PEFT

01

02

03

04

https://www.nlpfromscratch.com

Fine-tuning
LLMS

https://www.nlpfromscratch.com

Phases of LLM Training

Pre-training Fine-tuning Reinforcement
Learning

https://www.nlpfromscratch.com

Pre-training
The parlance of modern language models has changed
slightly from that of traditional machine learning.

For modern LLMs, the initial phase of training of the model,
now referred to as pre-training, consists of showing the
model massive quantities of unlabelled text, and optimizing
its parameters against a specific objective, such as next
token prediction. This is the most computationally intensive
and expensive part of training modern language models,
and results in a pre-trained “base model”.

Because of the scale, cost, and complexity required,
pre-training LLMs is typically only realistic for large
organizations with considerable financial backing,
infrastructure, and technical expertise.

https://www.nlpfromscratch.com

Reinforcement Learning from Human Feedback

A key innovation leading to significant improvement in
quality of responses of generative text models was that
of Reinforcement Learning from Human Feedback
(RLHF).

Though human feedback being incorporated into RL was
not a new idea, OpenAI was the first to apply this at scale
in training InstructGPT — the predecessor to ChatGPT
— using Proximal Policy Optimization (PPO).

A pretrained model is tuned on a collection of
human-generated responses to prompts (1), and a
reward model is also trained, incorporating human
feedback: a ranking of a selection of responses
generated by the model (2). These are then incorporated
together into iteratively training a final policy model
through reinforcement learning (3).

1

2

3

https://www.nlpfromscratch.com
https://openai.com/research/instruction-following
https://arxiv.org/abs/1707.06347

Fine-tuning
On the other hand, fine-tuning is less computationally intensive
and requires much less data.

In this part of the training process, a pre-trained model is shown
a smaller dataset and further optimized against another target
objective. This objective can be the same as that of the original
base model, or a different objective if a different type of “head”
is added to the base model.

In earlier machine learning parlance prior to that of LLMs, this
type of process is referred to as “transfer learning”, and indeed
fine-tuning is just a specific type of transfer learning.
Fine-tuning will be the focus of the remainder of this workshop
and we will see examples applied in code.

https://www.nlpfromscratch.com

Fine-tuning: Approaches

Full Fine-tuning Partial Fine-tuning

Update all weights in the model.
Computationally expensive and slow
with better model performance.

Freeze most weights in the model. Update final
or newly added layers. Less computationally
demanding with model performance tradeoff.

https://www.nlpfromscratch.com

Example: Fine-tuning BERT for classification

INPUT OUTPUTPRE-TRAINED
BERT MODEL

C
LA

SS
IF

IE
R

HE
AD

MODEL

https://www.nlpfromscratch.com

An example - BERT fine-tuned for sentiment

huggingface.co/textattack/bert-base-uncased-yelp-polarity

https://www.nlpfromscratch.com
http://huggingface.co/textattack/bert-base-uncased-yelp-polarity
http://huggingface.co/textattack/bert-base-uncased-yelp-polarity

Fine-tuning LLMs: Hands-on

Let’s apply fine-tuning to get
GPT-2 to speak like our favourite
Jedi Master

https://www.nlpfromscratch.com

Model Quantization
Training large language models is a very
computationally demanding task - for both storage
and compute - as the size of a model grows.

One way of addressing this issue is quantization -
working with numbers of lower precision for model
parameters and calculations, for example, storing
values as integers instead of floating points (decimal
numbers).

There are different quantization approaches as
information will always be lost. One method is affine
quantization which uses a scale factor and zero point
to map floating point values to integer ones as a
linear combination of the original values, together
with rounding and clipping.

https://www.nlpfromscratch.com

Parameter-Efficient Fine-Tuning (PEFT)
Parameter-Efficient Fine-tuning (PEFT) is a family of approaches which
fine-tune a small number of extra model parameters, either before or
after the LLM (additive) or by inserting smaller subsets of parameters
within certain parts of the model architecture (reparameterization).

Partial fine-tuning can be considered a type of PEFT (selective), however,
usually when one is speaking of PEFT it is in reference to one of a number
of approaches such as adapters, LoRA, QLoRA, P-Tuning, Prompt Tuning,
or Prefix Tuning that function as mentioned above.

PEFT is typically combined with model quantization, allowing the
fine-tuning of large language models efficiently and without prohibitive
infrastructure needs.

While PEFT is a topic in and of itself, we will focus in this workshop on the
commonly used LoRA approach.

https://www.nlpfromscratch.com
https://github.com/microsoft/LoRA

Introduced by researchers from Microsoft in June of
20211, LoRA is a type of PEFT that reduces the
computational cost of fine-tuning large language models
by reparameterizing the model training.

Instead of updating all the model weights in particular
parts of the transformer architecture, only pairs of rank
decomposition weight matrices in the low rank adapter
are updated, which are typically much, much fewer than
the total weights in the model.

The approach trains a separate sets of weights which
transform the input parameters into a low-rank
dimension, and a second matrix which transforms the
low-rank data to the output dimensions of the original
model.

Low-Rank Adaptation of LLMs (LoRA)

Pretrained
Weights LoRA

Input

Output

1. LoRA: Low-Rank Adaptation of Large Language Models

https://www.nlpfromscratch.com
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685

Parameter Efficient Fine-tuning: Hands-on

Let’s revisit fine-tuning LLMs to
speak like a Jedi, only now with
the full GPT-2!

https://www.nlpfromscratch.com

Merging the LoRA adapter

Pretrained
Weights LoRA

Input

Output

Merged Weights

Input

Output

https://www.nlpfromscratch.com

Fine-tuning with LoRA and Quantization: QLoRA

Building on the work of the research of the team at
Microsoft, researchers from University of Washington
developed QLoRA: Efficient Finetuning of Quantized
LLMs in May of 2023.

QLoRA makes parameter efficient fine-tuning even more
so by using 4-bit quantization for the model to be tuned,
introducing a new data type called 4-bit NormalFloat
(NF4), as well as other optimizations.

A notable output of the QLoRA research was that of the
Guanco model family which was fine-tuned on LLaMA 2.
You can see an example of using QLoRA in Hugging Face
in this example notebook and more details in the official
blog post from Hugging Face.

https://www.nlpfromscratch.com
https://arxiv.org/pdf/2305.14314.pdf
https://arxiv.org/pdf/2305.14314.pdf
https://github.com/artidoro/qlora
https://huggingface.co/spaces/uwnlp/guanaco-playground-tgi
https://colab.research.google.com/drive/1VoYNfYDKcKRQRor98Zbf2-9VQTtGJ24k?usp=sharing
https://huggingface.co/blog/4bit-transformers-bitsandbytes

Be mindful of your data 🤔

https://rosslazer.com/posts/fine-tuning/

Fine-tuning GPT3.5-turbo based on 140k slack messages

https://www.nlpfromscratch.com
https://rosslazer.com/posts/fine-tuning/
https://rosslazer.com/posts/fine-tuning/

Where do we go from here?

Onward…

https://www.nlpfromscratch.com

Training your own ChatGPT
“Chatbot”-style generative text models, which take a question
or utterance from the user as input and return with their own
fully response, must be trained and worked with differently.

At its simplest, this involves changing the format of the data the
model is trained on as being pairs of questions and answers. For
example, that LLaMA model has input an input format for
specifying system, user, and assistant (chatbot) text with
special characters denoting each part of the text.

Because of this, Hugging Face has added the chat template
functionality to make working with models like these easier.

On top of this, these models also usually have RLHF applied to
condition the format of outputs (e.g. to be complete
statements) and may also have instruction tuning applied.

<s>
[INST]
<<SYS>>

You are a helpful, respectful
and honest assistant.

<</SYS>>
There's a llama in my

garden 😱 What should I
do?

[/INST]

https://www.nlpfromscratch.com
https://huggingface.co/docs/transformers/main/en/chat_templating
https://arxiv.org/abs/2308.10792

Message Roles

SYSTEM USER ASSISTANT

Sets the behavior of
the assistant -

how it should behave
at the conversation

level (optional)

Provide requests or
input to which the

assistant will respond
(i.e. the prompts)

Responses from the
model. Can be used to
include conversation

history when it is
important (optional)

https://www.nlpfromscratch.com

Training a chat LLM - data format

from transformers import
AutoModelForCausalLM, AutoTokenizer, set_seed

conversation = [
 {"role": "user", "content": "Hello, how are you?"},
 {"role": "assistant", "content": "I'm doing great.
How can I help you today?"},
 {"role": "user", "content": "I'd like to show off how
chat templating works!"},
]

tokenizer=AutoTokenizer.from_pretrained("meta-ll
ama/Llama-2-7b-hf")

tokenizer.apply_chat_template(conversation,
tokenize=False)

conversation = [

 {"role": "user", "content": "Hello, how

are you?"},

 {"role": "assistant", "content": "I'm

doing great. How can I help you today?"},

]

Tokenizer = AutoTokenizer.from_pretrained(

"microsoft/Phi-3-mini-4k-instruct")

tokenizer.apply_chat_template(conversation,

tokenize=False))

<|user|>Hello, how are
you?<|end|>

<|assistant|>
I'm doing great. How
can I help you
today?<|end|>

<|endoftext|>

https://www.nlpfromscratch.com

RLHF Training

https://huggingface.co/docs/trl

https://www.nlpfromscratch.com
https://huggingface.co/docs/trl/index

Retrieval Augmented Generation
One of the known shortcomings of LLMs is the problem of
hallucinations - a model will provide responses which sound
plausible but are "made up".

Additionally, a desirable trait is the ability to have an LLM answer
questions about a specific dataset or corpus of documents which
was not part of its training data nor will fit into a prompt for
few-shot learning

Retrieval Augmented Generation (RAG) addresses both these
issues by combining information retrieval (i.e. search) against a
set of documents with a generative model. This allows the
creation of responses based on the foundation of a specific
dataset while eliminating the need for retraining or fine tuning
the model itself.

Normal LLM

LLM with RAG

https://www.nlpfromscratch.com

llmsfor.me
Part 2 - Fine-tuning, Quantization, and PEFT

Monday, January 13th, 2025

LLMsfor.me
PWYC Microcourse in LLMs and Generative AI

January 2025

End of Part 2

llmsfor.me

https://www.nlpfromscratch.com
http://llmsfor.me
http://llmsfor.me

