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Pre-training
The parlance of modern language models has changed 
slightly from that of traditional machine learning.

For modern LLMs, the initial phase of training of the model, 
now referred to as pre-training, consists of showing the 
model massive quantities of unlabelled text, and optimizing 
its parameters against a specific objective, such as next 
token prediction. This is the most computationally intensive 
and expensive part of training modern language models, 
and results in a pre-trained “base model”.

Because of the scale, cost, and complexity required, 
pre-training LLMs is typically only realistic for large 
organizations with considerable financial backing, 
infrastructure, and technical expertise.

https://www.nlpfromscratch.com


Reinforcement Learning from Human Feedback

A key innovation leading to significant improvement in 
quality of responses of generative text models was that 
of Reinforcement Learning from Human Feedback 
(RLHF).

Though human feedback being incorporated into RL was 
not a new idea, OpenAI was the first to apply this at scale 
in training InstructGPT — the predecessor to ChatGPT 
— using Proximal Policy Optimization (PPO).

A pretrained model is tuned on a collection of 
human-generated responses to prompts (1), and a 
reward model is also trained, incorporating human 
feedback: a ranking of a selection of responses 
generated by the model (2). These are then incorporated 
together into iteratively training a final policy model 
through reinforcement learning (3).
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Fine-tuning
On the other hand, fine-tuning is less computationally intensive 
and requires much less data. 

In this part of the training process, a pre-trained model is shown 
a smaller dataset and further optimized against another target 
objective. This objective can be the same as that of the original 
base model, or a different objective if a different type of “head” 
is added to the base model.

In earlier machine learning parlance prior to that of LLMs, this 
type of process is referred to as “transfer learning”, and indeed 
fine-tuning is just a specific type of transfer learning.
Fine-tuning will be the focus of the remainder of this workshop 
and we will see examples applied in code.
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Fine-tuning: Approaches

Full Fine-tuning Partial Fine-tuning

Update all weights in the model. 
Computationally expensive and slow 
with better model performance. 

Freeze most weights in the model. Update final 
or newly added layers. Less computationally 
demanding with model performance tradeoff.
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Example: Fine-tuning BERT for classification
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An example - BERT fine-tuned for sentiment

huggingface.co/textattack/bert-base-uncased-yelp-polarity

https://www.nlpfromscratch.com
http://huggingface.co/textattack/bert-base-uncased-yelp-polarity
http://huggingface.co/textattack/bert-base-uncased-yelp-polarity


Fine-tuning LLMs: Hands-on

Let’s apply fine-tuning to get 
GPT-2 to speak like our favourite 
Jedi Master
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Model Quantization
Training large language models is a very 
computationally demanding task - for both storage 
and compute - as the size of a model grows.

One way of addressing this issue is quantization - 
working with numbers of lower precision for model 
parameters and calculations, for example, storing 
values as integers instead of floating points (decimal 
numbers).

There are different quantization approaches as 
information will always be lost. One method is affine 
quantization which uses a scale factor and zero point 
to map floating point values to integer ones as a 
linear combination of the original values, together 
with rounding and clipping. 

https://www.nlpfromscratch.com


Parameter-Efficient Fine-Tuning (PEFT)
Parameter-Efficient Fine-tuning (PEFT) is a family of approaches which 
fine-tune a small number of extra model parameters, either before or 
after the LLM (additive) or by inserting smaller subsets of parameters 
within certain parts of the model architecture (reparameterization).

Partial fine-tuning can be considered a type of PEFT (selective), however, 
usually when one is speaking of PEFT it is in reference to one of a number 
of approaches such as adapters, LoRA, QLoRA, P-Tuning, Prompt Tuning, 
or Prefix Tuning that function as mentioned above.

PEFT is typically combined with model quantization, allowing the 
fine-tuning of large language models efficiently and without prohibitive 
infrastructure needs.

While PEFT is a topic in and of itself, we will focus in this workshop on the 
commonly used LoRA approach.

https://www.nlpfromscratch.com
https://github.com/microsoft/LoRA


Introduced by researchers from Microsoft in June of  
20211, LoRA is a type of PEFT that reduces the 
computational cost of fine-tuning large language models 
by reparameterizing the model training.

Instead of updating all the model weights in particular 
parts of the transformer architecture, only pairs of rank 
decomposition weight matrices in the low rank adapter 
are updated, which are typically much, much fewer than 
the total weights in the model.

The approach trains a separate sets of weights which 
transform the input parameters into a low-rank 
dimension, and a second matrix which transforms the 
low-rank data to the output dimensions of the original 
model.
 

Low-Rank Adaptation of LLMs (LoRA)

Pretrained 
Weights LoRA

Input

Output

1. LoRA: Low-Rank Adaptation of Large Language Models
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Parameter Efficient Fine-tuning: Hands-on

Let’s revisit fine-tuning LLMs to 
speak like a Jedi, only now with 
the full GPT-2!
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Merging the LoRA adapter
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Fine-tuning with LoRA and Quantization: QLoRA

Building on the work of the research of the team at 
Microsoft, researchers from University of Washington 
developed QLoRA: Efficient Finetuning of Quantized 
LLMs in May of 2023.

QLoRA makes parameter efficient fine-tuning even more 
so by using 4-bit quantization for the model to be tuned, 
introducing a new data type called 4-bit NormalFloat 
(NF4), as well as other optimizations.

A notable output of the QLoRA research was that of the 
Guanco model family which was fine-tuned on LLaMA 2. 
You can see an example of using QLoRA in Hugging Face 
in this example notebook and more details in the official 
blog post from Hugging Face.

https://www.nlpfromscratch.com
https://arxiv.org/pdf/2305.14314.pdf
https://arxiv.org/pdf/2305.14314.pdf
https://github.com/artidoro/qlora
https://huggingface.co/spaces/uwnlp/guanaco-playground-tgi
https://colab.research.google.com/drive/1VoYNfYDKcKRQRor98Zbf2-9VQTtGJ24k?usp=sharing
https://huggingface.co/blog/4bit-transformers-bitsandbytes


Be mindful of your data 🤔

https://rosslazer.com/posts/fine-tuning/

Fine-tuning GPT3.5-turbo based on 140k slack messages

https://www.nlpfromscratch.com
https://rosslazer.com/posts/fine-tuning/
https://rosslazer.com/posts/fine-tuning/


Where do we go from here?

Onward…

https://www.nlpfromscratch.com


Training your own ChatGPT
“Chatbot”-style generative text models, which take a question 
or utterance from the user as input and return with their own 
fully response, must be trained and worked with differently.

At its simplest, this involves changing the format of the data the 
model is trained on as being pairs of questions and answers. For 
example, that LLaMA model has input an input format for 
specifying system, user, and assistant (chatbot) text with 
special characters denoting each part of the text.

Because of this, Hugging Face has added the chat template 
functionality to make working with models like these easier.

On top of this, these models also usually have RLHF applied to 
condition the format of outputs (e.g. to be complete 
statements) and may also have instruction tuning applied.

<s>
[INST] 
<<SYS>>

You are a helpful, respectful 
and honest assistant. 

<</SYS>>
There's a llama in my 

garden 😱 What should I 
do? 

[/INST]

https://www.nlpfromscratch.com
https://huggingface.co/docs/transformers/main/en/chat_templating
https://arxiv.org/abs/2308.10792


Message Roles

SYSTEM USER ASSISTANT

Sets the behavior of 
the assistant -

how it should behave 
at the conversation 

level (optional)

Provide requests or 
input to which the 

assistant will respond 
(i.e. the prompts)

Responses from the 
model. Can be used to 
include conversation 

history when it is 
important (optional)

https://www.nlpfromscratch.com


Training a chat LLM - data format

from transformers import 
AutoModelForCausalLM, AutoTokenizer, set_seed

conversation = [
  {"role": "user", "content": "Hello, how are you?"},
  {"role": "assistant", "content": "I'm doing great. 
How can I help you today?"},
  {"role": "user", "content": "I'd like to show off how 
chat templating works!"},
]

tokenizer=AutoTokenizer.from_pretrained("meta-ll
ama/Llama-2-7b-hf")

tokenizer.apply_chat_template(conversation, 
tokenize=False)

conversation = [

  {"role": "user", "content": "Hello, how 

are you?"},

  {"role": "assistant", "content": "I'm 

doing great. How can I help you today?"},

]

Tokenizer = AutoTokenizer.from_pretrained(

"microsoft/Phi-3-mini-4k-instruct")

tokenizer.apply_chat_template(conversation, 

tokenize=False))

<|user|>Hello, how are 
you?<|end|>

<|assistant|>
I'm doing great. How 
can I help you 
today?<|end|>

<|endoftext|>
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RLHF Training

https://huggingface.co/docs/trl

https://www.nlpfromscratch.com
https://huggingface.co/docs/trl/index


Retrieval Augmented Generation
One of the known shortcomings of LLMs is the problem of 
hallucinations - a model will provide responses which sound 
plausible but are "made up".

Additionally, a desirable trait is the ability to have an LLM answer 
questions about a specific dataset or corpus of documents which 
was not part of its training data nor will fit into a prompt for 
few-shot learning

Retrieval Augmented Generation (RAG) addresses both these 
issues by combining information retrieval (i.e. search) against a 
set of documents with a generative model. This allows the 
creation of responses based on the foundation of a specific 
dataset while eliminating the need for retraining or fine tuning 
the model itself.

Normal LLM

LLM with RAG
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